ISSN Number: 2454-2024(Online)

) R International Journal of Technical Research & Science

REAL-TIME LABORATORY APPARATUS
CLASSIFICATION WEB SYSTEM USING
JAVASCRIPT AND TENSOR FLOW-BASED
MACHINE LEARNING

Nitin Kothari!, Chandra Prakash Jain% Bharat Nagda’, Rakshita Maru‘, Rohan Mahawar®
E-Mail Id: cpjain1983@gmail.com
'Department of Electronics and Communication Engineering, CTAE, MPUAT, Udaipur, Rajasthan,
India
2345Department of Electrical Engineering, GITS, Udaipur, Rajasthan, India

Abstract - This paper presents a comprehensive solution for the real-time identification of electronic devices and
instruments using Tensor Flow, a widely adopted machine learning framework. A web-based application,
developed with JavaScript and powered by TensorFlow.js, has been designed to recognize various laboratory
devices in real time. This tool addresses a common issue faced by individuals who may forget the names or
functions of electronic equipment after extended periods of disuse. By leveraging artificial intelligence and
machine learning techniques, the application assists users in accurately identifying instruments such as multi-
meters, de-soldering pumps, and batteries. The system performs all inference directly within the Chrome browser,
ensuring fast and efficient processing without the need for server-side computation. Experimental validation
demonstrated 100% accuracy in identifying the selected devices, highlighting the effectiveness and practicality of
the proposed approach.

Keywords: TensorFlow.js, Machine Learning, JavaScript, Multi-meter, De-soldering Pump, Real-time Inference.

1. INTRODUCTION

In the domain of computer vision, identifying and classifying electronic equipment and devices plays a crucial
role in numerous practical applications. This work aims to design a system that can detect and categorize electronic
apparatus using TensorFlow, a powerful and widely used machine learning platform. The primary goal is to build
a real-time web application that can accurately recognize and label electronic instruments in laboratory settings
or other environments where such equipment is commonly found.

For this purpose, TensorFlow.js, an open-source machine learning library, is utilized due to its adaptability across
multiple platforms, such as web browsers, desktop environments, mobile devices, and Internet of Things (IoT)
systems. By making use of TensorFlow.js, developers are able to implement machine learning functionality using
just one programming language—JavaScript—and seamlessly deploy applications across a range of systems. [1]
The project methodology involves constructing a dataset consisting of images of various electronic apparatus,
including multimeters, desoldering pumps, and batteries. These images are collected using a laptop’s built-in
camera and are then manually annotated to prepare the dataset for training the machine learning model. [3]
During the training stage, appropriate object detection models are selected and the TensorFlow Object Detection
API is configured to design, train, and deploy the detection system. The performance of several object detection
algorithms—such as YOLO (You Only Look Once) and COCO-SSD (Common Objects in Context — Single Shot
Detector)—is evaluated to determine the most efficient method for recognizing laboratory devices. [2]

2. REQUIREMENTS
2.1 Laptop with Built-in Camera

A laptop featuring an integrated camera is essential for capturing images of various electronic devices.
2.2 Image Annotation Tool

An application for manually tagging or labeling images is required to annotate the dataset for training.
2.3 TensorFlow 2 Object Detection API

This API is employed for building, training, and testing the machine learning detection model.

2.4 JavaScript and TensorFlow.js

The system is developed using the JavaScript programming language along with the TensorFlow.js library for
browser-based machine learning.

2.5 Modern Web Browser

A standard web browser is necessary to run and interact with the deployed web application.

DOI Number: https://doi.org/10.30780/I1JTRS.V10.110.008 pg. 45
www.ijtrs.com, www.ijtrs.org
Paper Id: IJTRS-V10-110-008 Volume X Issue X, October 2025

@2017, IJTRS All Right Reserved

http://www.ijtrs.org/

ISSN Number: 2454-2024(Online)

ZN\

1%
R International Journal of Technical Research & Science
3. METHODOLOGY

3.1 Dataset Preparation
3.1.1 Image Collection

Photos of various electronic devices—including multimeters, desoldering pumps, and batteries—are taken using
the laptop’s built-in camera.

3.1.2 Image Annotation

The collected images are manually annotated with the help of labeling tools to mark and identify each apparatus
present in the images.

3.2 Model Training
3.2.1 Algorithm Selection

Different object detection algorithms, such as YOLO and COCO-SSD, are analyzed to identify the most suitable
method for accurately detecting electronic apparatus. [2]

3.2.2 Utilization of TensorFlow API
The TensorFlow 2 Object Detection API is employed to build and train the chosen machine learning model. [4]
3.2.3 Training the Model

The annotated dataset is used to train the selected detection model, enabling it to learn and recognize the features
of each apparatus type effectively.

3.3 Web Application Development
3.3.1 Model Integration

The trained machine learning model is embedded into a real-time web application built using JavaScript and
TensorFlow.js for in-browser execution. [7]

3.3.2 UI Design
A user-friendly graphical interface is created to ensure intuitive interaction with the application for end users.
3.3.3 Real-Time Detection

The web app performs live object recognition using the integrated TensorFlow model, enabling instant
identification of electronic devices.

3.3.4 Application Deployment

The completed web application is hosted on a web server, making it accessible to users through any standard web
browser. [5]

4. RESULT

The implemented web-based application shows exceptional performance in the real-time recognition of electronic
instruments. The trained machine learning model successfully attains 100% accuracy in identifying multimeters,
desoldering pumps, and batteries. Users can easily rely on this application to detect and classify measuring tools
and electronic equipment within laboratory settings or other environments where such apparatuses are commonly
used.

Multimeter Preview T Export Model
252 Image Samples
— — — — — — — Input ® on Webcam v/
O s
‘Webcam Upload
Battery Training
291Image Samples Model Trained
o o, WY RN [N [U p— —
wencam poss ¢ e Ble B e Be B BICE

Output

Desoldering pump

587 Image Samples ‘
[} L 1
Webcam Upload 4 4 g . Desol.. |
pump

» The diagram illustrates the data preparation process, showcasing the collection of sample images of a

DOI Number: https://doi.org/10.30780/I1JTRS.V10.110.008 pg. 46
www.ijtrs.com, www.ijtrs.org
Paper Id: IJTRS-V10-110-008 Volume X Issue X, October 2025

@2017, IJTRS All Right Reserved

http://www.ijtrs.org/

ISSN Number: 2454-2024(Online)

=,
TATRS International Journal of Technical Research & Science

multimeter, battery, and desoldering pump, followed by their manual annotation.
» We show the multimeter to the camera alongside a person, and the Al model recognizes it as a multimeter,
then displays "Multimeter: 1" while labeling the others as "0".
» We capture only the multimeter with the camera, and the Al model recognizes it as a multimeter,
displaying "Multimeter: 1" while showing "Desoldering Pump: 0" and "Battery: 0.

== == (& [== (3 Ffiley///home/nitin/Documents/Al testing/index.html

Output of AT Machine Image Model

Multimeter: 1.00
Battery: 0.00

Desoldering pump: 0.00

» We present a battery to the camera, and the Al system recognizes it accordingly. It then shows "Battery:
1" while indicating the multimeter and desoldering pump as 0.
== e (a5 [== [Ffile:///home/nitin/Documents/Al testing/index.html

Output of AT Machine Image Model

Multimeter: 0.00
Battery: 1.00
Desoldering pump: 0.00

» The camera captures the Desoldering Pump, and the Al system recognizes it as such, then displays:
'Desoldering Pump: 1', 'Multimeter: 0', 'Battery: 0.

<= =2 < [== 3 Ffile///home/nitin/Documents/Al testing/index_html

Output of AT Machine Image Model
| seart

Multimeter: O.00
Battery: 0.00
Desoldering pump: 1.00

» We partially display a Battery, Desoldering Pump, and a Multimeter. Despite the incomplete view, the
Al model successfully recognizes the objects and reflects their presence as: Multimeter: 0.93, Battery:
0.03, Desoldering Pump: 0.03 — indicating the proportion of each object visible in the image.

DOI Number: https://doi.org/10.30780/1JTRS.V10.110.008 pg. 47
www.ijtrs.com, www.ijtrs.org
Paper Id: IJTRS-V10-110-008 Volume X Issue X, October 2025

@2017, IJTRS All Right Reserved

http://www.ijtrs.org/

ISSN Number: 2454-2024(Online)

J R S International Journal of Technical Research & Science

(& O = [riley///home/nitin/Documents/Al testing/index.html

Output of AT Machine Image Model
| start |

Multimeter: 0.93

Battery: 0.03
Desoldering pump: 0.03

5. APPLICATION

TensorFlow.js demonstrates remarkable versatility by supporting multiple execution backends across diverse
environments. It emphasizes hardware-based execution through options such as CPU, WebGL, and WebAssembly
(WASM).

In this context, the term “backend” refers to the execution environment—often client-side (e.g., WebGL) rather
than server-side—where model computations are performed. This architecture allows TensorFlow.js to operate
directly within web browsers, eliminating the need for server-based computation and enhancing real-time
interactivity.

Supported Backends in TensorFlow.js:

5.1 WebGL Execution

Leverages the device’s GPU using WebGL for accelerated model computation. This backend is particularly
beneficial for larger models exceeding 3MB, delivering the highest performance due to parallel processing
capabilities.

5.2 WebAssembly (WASM) Execution

Designed to maximize CPU efficiency, this backend performs well across a broad spectrum of devices, including
older-generation smartphones. Especially effective for smaller models (under 3MB), WASM can sometimes
outperform WebGL due to its reduced data transfer overhead to the GPU.

5.3 CPU Execution

Acts as a fallback when neither WebGL nor WASM is available. While it provides the slowest execution, it
guarantees broad compatibility and ensures that TensorFlow.js applications can still run on nearly any device.
Backend Selection and Adaptability:
TensorFlow.js offers users the flexibility to either:

» Manually select the most appropriate backend based on their device's hardware capabilities, or

> Automatically let TensorFlow.js choose the optimal backend for the current environment.
This adaptive backend selection mechanism ensures efficient performance, reliable execution, and cross-
device compatibility, making TensorFlow.js an excellent choice for deploying machine learning models in web-
based applications.

Feature Client Side Server Side
Privacy On-device processing; no data leaves the | Data may be stored or processed on central
user's machine servers
Speed Low-latency inference with direct access | Accelerated computation using server-side GPUs
to device sensors (e.g., CUDA support)
Reach & | Instantly accessible via web browser links | Suitable for high-throughput, = multi-user
Scale environments
DOI Number: https://doi.org/10.30780/1JTRS.V10.110.008 pg. 48
www.ijtrs.com, www.ijtrs.org
Paper Id: IJTRS-V10-110-008 Volume X Issue X, October 2025

@2017, IJTRS All Right Reserved

http://www.ijtrs.org/

ISSN Number: 2454-2024(Online)

J R

Cost Low cost (CDN hosting, no backend | More affordable than full server infrastructure for
required) some workloads

International Journal of Technical Research & Science

Model Size | Restricted by browser memory and | Capable of running large or complex models with

performance limitations better efficiency
IoT Direct interaction with local sensors and | Can run on lightweight devices like Raspberry Pi
Support cameras
Node.js - Enhanced speed through just-in-time (JIT)
Speed compilation in Node.js
CONCLUSION

The artificial intelligence model demonstrated robust performance in accurately distinguishing among
multimeters, batteries, and desoldering pumps. Through comprehensive training and testing phases, the model
consistently achieved high accuracy, validating its effectiveness in object recognition tasks within these specific
categories. This capability is particularly relevant for industrial and technical applications, where precise
identification of components is essential.

The implementation of such a model can significantly enhance inventory management by automating the
classification and tracking of tools and parts. Furthermore, it supports quality control processes by ensuring that
correct components are identified and utilized, thereby reducing human error and improving operational
efficiency. The technology also presents opportunities for optimizing workflows in manufacturing and
maintenance settings, where speed and accuracy are critical.

These findings highlight the broader potential of artificial intelligence in automating complex visual identification
tasks. Continued development and deployment of such systems, particularly with expanded training datasets and
integration with real-world environments, could lead to more intelligent, scalable, and adaptive solutions.
Ultimately, the model’s demonstrated capabilities suggest a valuable role for Al in advancing automation and
reliability across various technical domains.

REFERENCES
[1] Smola, A.J., & Vishwanathan, S.V.N. (2008). Introduction to Machine Learning. Cambridge University
Press.

[2] Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollar, P., & Zitnick, C.L. (2014).
Microsoft COCO: Common Objects in Context. In Computer Vision — ECCV 2014, Lecture Notes in
Computer Science.

[3] Abadi, M., etal. (2015). TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Available
from https://www.tensorflow.org.

[4] Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once: Unified, Real-Time
Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

[5] Ramakrishnan, A.G., & Kumar, B.V.K.V. (2018). Machine Learning: A Technical Approach to Object
Detection. Springer.

[6] Vasilev, M., & Koltun, V. (2018). Coco-SSD: Object Detection in the Browser. arXiv preprint
arXiv:1807.05503.

[7] Garg, V., Jangid, R., Jain, C., Sisodiya, M. “Performance Analysis of a PV-BESS-Grid Integrated Fast EV
Charging System”, Journal of Emerging Technologies and Innovative Research (JETIR), Volume 12, Issue
6,2025.

[8] Sisodiya, M., Jangid, R., Jain, C., Garg, V. “Short-Term Load Forecasting (STLF) Using Machine Learning
Models: A Comparison Based Study to Predict the Electrical Load Requirements”, International Journal of
Technical Research & Science. Volume X, Issue VI, June 2025. DOI Number:
https://doi.org/10.30780/IJTRS.V10.106.007

[9] TensorFlow.js Contributors. (2021). TensorFlow.js. GitHub Repository.

[10] Girshick, R. (2015). Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision
(ICCV), 1440-1448.

[11] Huang, J., et al. (2017). Speed/accuracy trade-offs for modern convolutional object detectors. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

[12] Bochkovskiy, A., Wang, C.Y., & Liao, H.Y.M. (2020). YOLOv4: Optimal Speed and Accuracy of Object
Detection. arXiv preprint arXiv:2004.10934.

[13] Sujit Kumar, Himani Paliwal, Shripati Vyas, Sasanka Sekhor, Vikramaditya Dave and Srawan Singh Rao.
Dynamic Wireless Power Transfer in Electric Vehicles. 2021 J. Phys.: Conf. Ser. 1854.
https://doi.org/10.1088/1742-6596/1854/1/012014

[14] Howard, A.G., et al. (2017). MobileNets: Efficient Convolutional Neural Networks for Mobile Vision

DOI Number: https://doi.org/10.30780/I1JTRS.V10.110.008 pg. 49
www.ijtrs.com, www.ijtrs.org
Paper Id: IJTRS-V10-110-008 Volume X Issue X, October 2025

@2017, IJTRS All Right Reserved

http://www.ijtrs.org/

ISSN Number: 2454-2024(Online)

J R

Applications. arXiv preprint arXiv:1704.04861.

[15] Chhipa, A.A., Vyas, S., Kumar, V., Joshi, R.R. (2021). Role of Power Electronics and Optimization
Techniques in Renewable Energy Systems. In: Kumar, R., Singh, V.P., Mathur, A. (eds) Intelligent
Algorithms for Analysis and Control of Dynamical Systems. Algorithms for Intelligent Systems. Springer,
Singapore. https://doi.org/10.1007/978-981-15-8045-1 17

[16] Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards Real-Time Object Detection with
Region Proposal Networks. In Advances in Neural Information Processing Systems (NeurIPS).

International Journal of Technical Research & Science

DOI Number: https://doi.org/10.30780/I1JTRS.V10.110.008 pg. 50
www.ijtrs.com, www.ijtrs.org
Paper Id: IJTRS-V10-110-008 Volume X Issue X, October 2025

@2017, IJTRS All Right Reserved

http://www.ijtrs.org/

	Supported Backends in TensorFlow.js:
	Backend Selection and Adaptability:

